
Datasheet: Assemblage Total Binaries
(Snapshot March 2024)
ASSEMBLAGE TEAM

1 Introduction
To address the lack of available benign binaries, along with ground truth
compilation and configuration data, we present Assemblage. Assemblage is
both a richly-diverse corpus of Windows PE and Linux ELF binaries, and also
the distributed system that generates the corpus. Assemblage continuously
crawls GitHub, diversifies repositories, and builds as many binary artifacts as it
can. The design of Assemblage enables adding new workers, builders, and post-
processors to add new toolchains, analyses, and diversification mechanisms.
Here we describe the largest to-date dataset we have built using Assemblage,
which includes publicly-available source repositories. We distribute a subset
of the binaries which correspond to permissively-licensed repositories (as to
not distribute unlicensed code); however, Assemblage does enable crawling
and building unlicensed code, and is designed to enable distributing “recipes,”
which can reproduce a binary corpus with high fidelity.

2 Dataset Generation
The main source for the dataset lies on GitHub and package managers. The
binaries are built from 4 million C++ repositories queried from Jan 01 2010 to
Nov 28 2023, while the Windows worker will try build the repositories with
Solution files, and the Linux worker will build the repositories with Makefile.
To diversify the binaries from same copy of source code, parser for configura-

tion files of Visual Studio and Makefile are implemented to modify the compiler
flags during compilation and building. The actual compiling and building are
implemented by calling MSBuild on Windows and make on Linux.
During the compilation and building, Make and MSBuild are called on ei-

ther makefile or solution file, each triggered its own compiler tool chain. By
inspecting the binary generated and the compiler tool chain’s process exit
code, this copy of binary is decided whether successfully built, if so the parser
for pdb files utilizing DIA2dump [2] would read from pdb files and retrive the
mapping from source code to the address and bytes within binaries.

3 SQLite Details
A comprehensive capture of binary and function information stored during
building and retrieved from pdb files is provided as a SQLite database, where
each tables stores specific part of the information and can be queried to generate

Author’s address: Assemblage Team.



2a subset of features for faster access. The overview of the schema is illustrated
in Figure 1, and each table’s details is listed as below,

Fig. 1. Schema of SQLite database for dataset

• Binaries table provides the basic binary information, the compiler ver-
sion and optimization level, the source code URL, and size of each
binary

• Functions table provides complete information about each function,
such as source code and the hash of its bytes

• RVAs table provides the relative virtual address for each function, which
can be queried together with functions in case that one function spans
in multiple chunks within the binary.

• Lines table provides the mapping from one line of source code to the
RVA address function

• PDBs table indicates the pdb file for each binary
While the SQLite database provides a comprehensive capture of all informa-

tion about the dataset, it is quite common that only a subset of it is necessary
for specific tasks, so shaping data into certain format would increased the
data querying speed. Hence, SOME example of querying SQLite database are
provided, and with certain script such as sqlite3 and pandas module in Python,
these information can be stored into csv for faster access.

4 Dataset Statistics
By the source code hosting platform, license, and build platform, the dataset gen-
erated by Assemblage can be divided into several categories, and an overview
of the datasets statistics can be found at in Table 1.



Datasheet: Assemblage Total Binaries (Snapshot March 2024) 3

Fig. 2. Examples of SQL query

-- Count functions of binaries size more than 100KB
SELECT COUNT(*) FROM functions
WHERE binary_id IN (SELECT id FROM binaries WHERE size>100);

-- Select binary information and RVA by function id:
SELECT f.id, f.name, r.start,
b.id, b.toolset_version, b.optimization, b.github_url
FROM functions
WHERE functions.id=some_id
JOIN rvas r ON r.function_id=f.id
JOIN binaries b ON b.id=f.binary_id;

-- Dump all function name, rva address and binary id:
SELECT f.name, f.binary_id, r.start
FROM functions f JOIN rvas r ON f.id==r.function_id;

-- Dump ascending function name and rva starts for binary some_id
SELECT f.name, r.start
FROM rvas r
JOIN functions f ON r.function_id = f.id
JOIN binaries ON f.binary_id = binaries.id
WHERE binaries.id = some_id
ORDER BY r.start ASC;

Table 1. Datasets statistics

Source Platform License Total Reposotories Functions Functions
(w/ source code)

GitHub
Windows Mixed 890k 172k 298M 20M

Licensed 62k 12k 38M 3M

Linux Mixed 428k 48k 316M N/A
Licensed 211k 13k 186M N/A

vcpkg Windows Licensed 29k 1k 48M N/A

In terms of the functions, there exists 160M unique function bytes exists
within 298M functions, which can be utilized in various tasks, such as function
boundary identification, similarity identification [1, 3, 4]. It is also possible to
query each function’s address and extract them with PEFile Python module
with query shown in Figure 2.



4References
[1] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio, Mohamad

Mansouri, and Davide Balzarotti. 2022. How machine learning is solving the binary
function similarity problem. In 31st USENIX Security Symposium (USENIX Security 22).
2099–2116.

[2] Microsoft. 2022. Microsoft Visual studio Dia2dump Sample.
https://learn.microsoft.com/en-us/visualstudio/debugger/debug-interface-
access/dia2dump-sample?view=vs-2022

[3] Kexin Pei, Jonas Guan, David Williams King, Junfeng Yang, and Suman Jana. 2021. XDA:
Accurate, Robust Disassembly with Transfer Learning. In Proceedings of the 2021 Network
and Distributed System Security Symposium (NDSS).

[4] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and
Chao Zhang. 2022. jTrans: jump-aware transformer for binary code similarity detection.
Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis (2022). https://api.semanticscholar.org/CorpusID:249062999

https://learn.microsoft.com/en-us/visualstudio/debugger/debug-interface-access/dia2dump-sample?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/debugger/debug-interface-access/dia2dump-sample?view=vs-2022
https://api.semanticscholar.org/CorpusID:249062999


Datasheet: Assemblage Total Binaries (Snapshot March 2024) 5A Appendix

Table 2. Configuration distribution of licensed datasets.

OS Source Compiler Opt. Count
W
in
do

w
sP

E

GitHub

MSVC-v140
O1 5286
O2 12961
Ox 7395

MSVC-v141

O1 538
O2 4017
Od 4379
Ox 818

MSVC-v142
O1 6156
O2 4260
Od 4799

MSVC-v143
O1 5543
Od 3470
Ox 3247

vcpkg

MSVC-v120

O1 952
O2 945
Od 956
Ox 926

MSVC-v142

O1 2160
O2 2142
Od 2187
Ox 2145

MSVC-v143

O1 3081
O2 3078
Od 3074
Ox 3083

Li
nu

x
EL

F

GitHub

GCC-11.4.0

Od 25855
O1 25039
O3 24081
Oz 10609

Clang-14.0.0

Od 28489
O1 30542
O2 32809
O3 34239



6
Table 3. Configuration distribution on three datasets.

OS Source Compiler Opt. Count

W
in
do

w
sP

E

GitHub

MSVC-v140
O1 60126
O2 165866
Ox 100831

MSVC-v141

O1 6113
O2 78203
Od 86841
Ox 7470

MSVC-v142
O1 87497
O2 50055
Od 72613

MSVC-v143
O1 80243
Od 57011
Ox 37302

vcpkg

MSVC-v120

O1 952
O2 945
Od 956
Ox 926

MSVC-v142

O1 2160
O2 2142
Od 2187
Ox 2145

MSVC-v143

O1 3081
O2 3078
Od 3074
Ox 3083

Li
nu

x
EL

F

GitHub

GCC-11.4.0

Od 50338
O1 49860
O3 50995
Oz 22030

Clang-14.0.0

Od 50338
O1 63188
O2 65934
O3 69082


	1 Introduction
	2 Dataset Generation
	3 SQLite Details
	4 Dataset Statistics
	References
	A Appendix

